CONNECT400 GA 400 TRANSIT INITIATIVE

Public Meeting

March 21, 2013 Mimosa Elementary School

Today's Meeting Purpose

- Where We Are
- The Process
- What We've Heard and Findings
- Transit Technologies
- Station Types
- Break-out Session

Where We Are

C NNECT

Questions You May Have:

- Why are we doing this study?
- Hasn't this been done Before?
- Why don't you just extend the existing line?

Importance of this Study

- Evaluate feasibility of increased transit service
- Identify potential for high-capacity transit project implementation

Differentiation Between Past Studies

- Focused investment along GA 400 corridor
- Assess land development over past decade
- Consider demographic changes in study area
- Advance planning process from previous studies

Purpose

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 corridor by:

- Providing high capacity transit
- Improving transit linkages and coverage
- Enhancing mobility and accessibility

Need

Travel demand - Increased travel demand and traffic congestion is expected to result from population, employment, and households.

Transit mobility - There is inadequate transit including: eastwest travel; and limited northsouth roadway connectivity across the Chattahoochee River.

Connect 400 Alternatives Analysis Schedule

The Process

9

Technical Screening Process

MARTA Board to Adopt LPA

Recommendation

What We've Heard & Findings

Overview of Fatal Flaw Analysis

12

C NNECT

Step 1: Technology Assessment

- Review of 6 transit types
- Most appropriate Bus Rapid Transit (BRT); Light Rail/Streetcar (LRT/SC); Heavy Rail (HRT)

Step 2: Universe of Alternatives

 3 transit types + 9 alignments along GA 400 & SR 9

Step 3: Fatal Flaw Results

- Reduce 'universe' to a smaller set for Screen 1
- High-level based on purpose/need & constructability
- GA 400 1 (A,B,C,D): BRT, LRT, or HRT
- GA 400 3: BRT
- GA 400 6: BRT
- SR 9 2: BRT

Outreach

Survey Results:

 Respondents were asked to review Newsletter Number 2 and a presentation prior to taking the survey.

 The electronic survey was open between December 12, 2012 till January 17, 2013.

• 136 people began the survey.

119 people completed the survey (87.5%).

Outreach

Key Observations: 82% of respondents chose GA 400 Alternative 1A as the "most appropriate". GA Alternative 3 scored the lowest of all alternatives. Heavy Rail was the preferred mode choice. Concern about the need for true **Transit Oriented Development** and the quality of the last mile.

Screen 1 Analysis Georgia 400 - 3

Alignment

- 15.1 Miles Long
- North Springs Station GA 400 SR140 SR9 Mansell – North Point - Windward

Transit Technology

• Bus Rapid Transit

Key Assumptions

- Use of GDOT transit ROW*
- Dedicated lanes where feasible on arterials
- Congestion on SR 140
- Grade issues on Mansell crossing GA 400
- Integration with other regional transit projects

* GDOT ROW availability on GA 400 to be determined based on Managed Lanes Study

Screen 1 Analysis Georgia 400 - 6

Alignment

- 14.7 miles long
- North Springs Station GA 400 SR 140 SR 9 -Windward

Transit Technology

• Bus Rapid Transit

Key Assumptions

- Use of GDOT transit ROW*
- Dedicated lanes where feasible on arterials
- Grade, topography, roadway alignment & ROW issues on SR 9
- Integration with other regional transit projects

* GDOT ROW availability on GA 400 to be determined based on Managed Lanes Study

Screen 1 Analysis State Route 9 - 2

Alignment

- 19.6 miles long
- Dunwoody Station Hammond SR 9 Mansell
 North Point Pkwy Windward

Transit Technology

• Bus Rapid Transit

Key Assumptions

- Dedicated lanes where feasible on arterials
- Grade, topography, roadway alignment & ROW issues on SR 9
- Integration with other regional transit projects

Screen 1 Analysis Georgia 400 – 1 (A, B, C, D)

Alignment

- 11.9 to 12.7 Miles Long
- North Springs Station Windward via GA 400

Transit Technology

- Bus Rapid Transit
- Light Rail/Streetcar
- Heavy Rail

Key Assumptions

- Use of GDOT transit ROW*
- Most direct route
- Fewer community impacts
- Integration with other regional transit projects

* GDOT ROW availability on GA 400 to be determined based on Managed Lanes Study

Screen 1 Analysis Georgia 400 – 1 (A)

Alignment

- 11.9 to 12.7 Miles Long
- North Springs Station Windward via GA 400

Transit Technology

- Bus Rapid Transit
- Light Rail/Streetcar
- Heavy Rail

Key Assumptions

- Use of GDOT transit ROW*
- Most direct route
- Fewer community impacts
- Integration with other regional transit projects

* GDOT ROW availability on GA 400 to be determined based on Managed Lanes Study

Screen 1 and Outreach Summary

Methodology/Assumptions

- Qualitative and quantitative analysis
- Performance Measures based on Purpose & Need Goals and Objectives
- Station-related measures normalized for number of stations
- Results
 - GA 400-1 (all modes) and GA 400-3 (BRT) alternatives scored highest
 - Fewer potential community and environmental impacts
 - More population and employment access per-station

Holiday Outreach input

 GA 400-3 screened out due to concerns regarding potential length and time of transit trips, as well as impacts along arterials (Mansell Road and SR 140

Transit Technologies

Transit Considerations

Transit Modes

Station Types

Elements of Station Area Planning

Transit Station – Designing the elements of a transit station to meet their functional requirements within the greater context

25

Land Use – Determining and planning for the proper intensity and mix of uses surrounding the transit station

Mobility – Designing for all the ways that people get around the station area; on for by car, by bus, by bike, etc...

Urban Design – Making sure the elements interact with each other and make the station area a memorable place

Elements of Station Area Planning

Station Function & Service Area

½ - Mile Service Area

- Only serve a localized area immediately around the station
- Stations can be grouped to provide better service area overlay in the densest of areas
- Locate near minor thoroughfare

1 - Mile Service Area

- Most common transit stations
- Reliant on bus connections to the station
- Some customers will arrive by car - need for adequate parking and Kiss & Ride areas
- Locate near thoroughfare

3 - Mile Service Area

- Access by a more limited feeder bus network and a larger number of private vehicles
- Provide adequate facilities for all modes of travel
- Locate near major thoroughfare

5 - Mile Service Area

- Typically the station's toward the end of the line
- Access primarily by private vehicles
- Access to major thoroughfare or freeways

Land Use Context

ABRENT SARANSA

an an an an an an an

............

REFERENCES OF

High Intensity Urban Core

- Downtown cores most accessible place in the region
- Well-established and connected street pattern
- Densities supportive of transit
- Transit ranges from small local stations to large multi-modal stations
- Strong Transit Oriented Development (TOD) market

Established Urban Neighborhoods & Historic Communities

- Includes old streetcar suburbs and historic towns
- All have individual character builtup over time
- All feature a connected block system and transit-supportive densities
- TOD market varies, may need assistance.

Established Suburban Neighborhoods

.....

- Most common built form
- These areas are well developed, but lack orientation to the public realm
- Access usually comes from a fewer large roads
- Densities tend to be below transitsupportive levels.
- Few centers of activity
- TOD market varies, may need assistance

Telle Production and a second

New Suburban and Greenfields

- Outermost edge of the transit region
- Areas are quickly developing
- Connections are limited; but opportunities abound
- Densities are well below transitsupportive levels
- Stations located here will attract riders from a larger area
- No existing centers of activity
- TOD market varies

Learning from the Mall

C NNECT 400

Characteristics of Transit-Friendly Communities

Accessible

Comfortable

Connected

Convenient

Engaging

Vibrant

Characteristics of Transit-Friendly Communities

Accessible

35

C NNECT

Characteristics of Transit-Friendly Communities

Comfortable

Convenient

0-11

Connected

Engaging

Vibrant

TOD???

Break Out Sessions

42

Station Types

Urban Stations (1/2 - Mile Service Area)

 Only serve a localized area immediately around the station

 Stations can be grouped to provide better service area overlay in the densest of areas

• Locate near minor thoroughfare

Neighborhood Stations (1 - Mile Service Area)

Most common transit stations

• Reliant on bus connections to the station

• Some customers will arrive by car - need for adequate parking and Kiss & Ride areas.

• Locate near thoroughfare

Community Stations (3 - Mile Service Area)

• Access by a more limited feeder bus network and a larger number of private vehicles

• Provide adequate facilities for all modes of travel

• Locate near major thoroughfare

Regional Stations (5 - Mile Service Area)

 Typically the station's toward the end of the line.

 Access primarily by private vehicles

 Access to major thoroughfare or freeways.

Station Types

TRABLICADA CORT OF

2242449722

CRARGE STATES

Urban Stations (1/2 Mile Service Area)

Light Rail Transit

Bus Rapid

Neighborhood Stations (1 Mile Service Area)

Community Stations (3 Mile Service Area)

Break Out Session

- Select Transit Typology
- Identify Station Typology for each station

NN

C

Moving Forward

Next Steps

- Screen 2 Analysis
- Travel Demand Modeling
- Public Outreach Early Summer

0-

Connect 400 Contact

Jason Morgan, MARTA Project Manager

Connect400@itsmarta.com

Follow us at Connect 400 on facebook

www.itsmarta.com/north-line-400-corr.aspx

