

Project Steering Committee Meeting #5

May 9, 2013

marta

Today's Meeting Purpose

- Where We Are
- What We've Heard
- Screen 2 Analysis Results
- Question and Answer
- Where Do We Go From Here?

Purpose and Importance of this Study

- Evaluate feasibility of increased transit service
- Identify potential for high-capacity transit project implementation

Differentiation Between Past Studies

- Focused investment along GA 400 corridor
- Assess land development over past decade
- Consider demographic changes in study area
- Advance planning process from previous studies

Where We Are

Connect 400 Alternatives Analysis Schedule

DISCOVERY

- ?
- Goals and ObjectivesPurpose and Need
- » Existing Conditions

2011 Winter

DISCUSSION

- » Evaluation Methodology
- Definition of Alternatives
- » Refine Ridership Model

2012 Spring

DEVELOPMENT

- >> Evaluation of Alternatives
- >> Refine Alternatives

2012-2013 Summer-Spring

DOCUMENTATION

>> Early Scoping

2013 Summer

We are Here

Federal Project Development Process

Project Development: Typically 6 – 12 years

Alternatives
Analysis / System
Planning

Preliminary
Engineering / Finalize
Environmental

Final
Design

Construction
Operation
1 – 2 years

2 – 3 years

1 – 3 years

2 – 3 years

We are Here

Screening Process and What We've Heard

Technical Screening Process

<u>Fatal Flaw Analysis</u> considers at a high level:

- ·Purpose & Need
- ·Constructability & right-of-way impacts
- ·Generalized Technology Assessment

Defined alternatives (combinations of alignment & transit technology) for Screen 1

<u>Screen 1</u> applies both quantitative & qualitative evaluation criteria to reduce the number of alternatives

Smaller set of alternatives advance into Screen 2

<u>Screen 2</u> involves a more in-depth analysis using additional performance measures

Screen 2 refines the alternatives

Recommendation to MARTA Board

Screen 2 Analysis/ Alternatives Refinement

Alt

Alt

Alt

Early Scoping

Stakeholder and Community Outreach

Stakeholder Interviews – approx. 30

- February to April 2012
- Staff and local officials throughout study area

Public Meetings

- January 22, 2012; May 22, 2012; March 21, 2013
- Minority and Non-English Speaking Leadership Meeting Dec. 13, 2011
- North Fulton Chamber of Commerce Breakfast Forum Aug. 30, 2012

Technical Advisory Committee

- Dec. 13, 2011; Feb. 28, 2012; Oct. 25, 2012 (on-line)
- Reviews process and provides guidance on screening methodology

Project Steering Committee

- Jan. 18, 2012; Mar. 22, 2012; Nov. 14 2012; Feb. 26, 2013
- Provides guidance on local policies and broader community concerns

Holiday/Winter Survey – 136 Respondents

- Prefer heavy rail extension
- Dec. 12, 2012 to Jan. 17, 2013

Overview of Fatal Flaw Analysis

Step 1: Technology Assessment

- Independent review of 6 modes
- Most appropriate Bus Rapid Transit (BRT); Light Rail/Streetcar (LRT/SC); Heavy Rail (HRT)

Step 2: Universe of Alternatives

 3 modes + 9 alignments along GA 400 & SR 9

Step 3: Fatal Flaw Analysis

- Reduce 'universe' to a smaller set for Screen 1
- High-level based on purpose/need & constructability

Screen 1 and Outreach Summary

Methodology/Assumptions

- Qualitative and quantitative analysis
- Performance measures based on Purpose and Need, Goals and Objectives
- Station-related measures normalized for number of stations

Results

- Alignments should be limited to be adjacent to or within GA 400 right-ofway
 - Fewer potential community and environmental impacts
 - More population and employment access per station
 - East/West feeder connections are needed to relieve arterials
- Heavy Rail Transit (HRT) was preferred due to speed and elimination of transfer
- Windward Parkway was preferred to be a Regional Station
- Northridge rather Pitts was a preferred station location
- Community Stations are preferred for:
 - Northridge, Holcomb Bridge, Mansell, North Point, and Old Milton.

Screen 1 Findings

Fatal Flaw Analysis considers at a high level: ·Purpose & Need

·Constructability & right-of-way impacts Generalized Technology Assessment

Defined alternatives (combinations of alignment & transit technology) for Screen 1

Screen 1 applies both quantitative & qualitative evaluation criteria to reduce the number of alternatives

Smaller set of alternatives advance into Screen 2

Screen 2 involves a more in-depth analysis using additional performance measures

Screen 2 refines the alternatives

Fatal Flaw Analysis Screen 2 Analysis/ Alternatives Refinement Early Scoping

GA 400-1Å

Heavy Rail (HRT)

Detailed Screen 2 Findings

Alternatives for Screen 2

Georgia 400 – 1 (A)

Alignment

- 11.9 miles Long
- North Springs Station Windward via GA 400

Transit Technology

- Bus Rapid Transit
- Light Rail/Streetcar
- Heavy Rail

Potential Stations

- Northridge
- Holcomb Bridge
- Mansell Road
- North Point
- Old Milton
- Windward Parkway

* GDOT ROW availability on GA 400 to be determined based on Managed Lanes Study

Screen 2 Analysis

Rating System

- High, Medium, or Low with a score of 2,1, or 0 respectively
- Best performing alternative rated 'High' for each measure; other alternatives rated relative to best performing alternative

Rating	Deviation from Highest Performing	Scoring
High	0 to 10%	2
Medium	10 to 20%	1
Low	Greater Than 20%	0

Screen 2 Findings

Distinguishing Performance Measures

- Many of the performance measures showed no significant difference between alternatives.
- Distinguishing Measures are those measures where the alternatives rated differently.

Goal 1: Mobility & Access	Goal 2: Land Use & Economic Development		
Ridership	Transit Supportive Land Use		
Time Savings	Underutilized Land		
Crash Reductions			
Goal 3: Cost Effective Service	Goal 4: Environment		
Capital	Changes in VMT		
Operations & Maintenance	Pollution		
Cost per Trip	Noise		

Goal 1: Improve Mobility & Access Best Performing Alternative(s): HRT

Distinguishing Measures

- Scored significantly higher than other alternatives for Goal 1
- Scored 'High' while other alternatives scored 'Low' for:
 - Daily Projected Transit Boardings
 - New Transit Riders
 - Annual Corridor Crash Reductions
- Scored 'High' while other alternatives scored 'Medium' for:
 - Projected Population and Employment within a 10-Minute Drive
 - Low-income residents within 10-Minute Walk
 - Interface with existing/future transit (including Concept 3)

Mobility & Ridership

	Heavy Rail Transit (HRT)	Light Rail Transit (LRT)	Bus Rapid Transit (BRT)
Daily Transit Boardings (2040)	23,700	15,800	13,300
New Transit Riders (2040)	10,900	7,000	5,400
Annual Corridor Crash Reductions	44	14	9
Daily Travel Time Savings (Hours of User Benefits)	9,300	6,200	4,500

All ridership forecasts are estimates and are subject based on further analysis

Goal 2: Support Land Use & Economic Development

Best Performing Alternative(s): LRT

Distinguishing Measures

- Rated 'High' in 3 of the 4 Distinguishing Measures:
 - Consistency with adopted local/regional plans
 - Transit-supportive land use/zoning within ½ mile of stations
 - Acres of vacant or underutilized land within ½ mile of stations

Goal 3: Provide Cost-Effective Transit Service

Best Performing Alternative(s): BRT

Distinguishing Measures

- Scored significantly higher than others in cost measures
- Scored 'High' in all four of the Distinguishing Measures while other alternatives scored 'Low':
 - Annual Operating & Maintenance (O&M) Costs
 - Construction Capital Costs

Costs & Cost-Effectiveness

	Heavy Rail Transit (HRT)	Light Rail Transit (LRT)	Bus Rapid Transit (BRT)	
Annual Estimated O&M Costs	\$18 Million	\$20 Million	\$10 Million	
Construction Capital Costs	\$2.4 Billion	\$1.8 Billion	\$631 Million	
Cost Per Trip	\$17	\$21	\$12	

All costs are estimates and are subject to change based on additional engineering analysis

Goal 4: Minimize Environmental Impacts Best Performing Alternative(s): HRT

Distinguishing Measures

- HRT slightly better than BRT; LRT scored low
 - HRT (14)
 - BRT (9)
 - LRT (4)
- Distinguishing Measures:
 - HRT has greatest ability to reduce vehicle miles traveled (VMT) and air quality pollutants
 - BRT has least impact on noise-sensitive land uses
 - HRT would have lesser impact to water resources, historic resources and vibration-sensitive locations because of the absence of Old Milton station

Environmental/Community Impact

	Heavy Rail Transit (HRT)	Light Rail Transit (LRT)	Bus Rapid Transit (BRT)
Change in Vehicle Miles Traveled	-48,000	-24,000	-16,000
Reduction in Air Quality Pollutants	Highest	Intermediate	Lowest
Noise-Sensitive Land Uses w/in 750' of HRT, 350' of LRT, 200' of BRT	841 acres	250 acres	73 acres
(Residential + Low-Density Commercial + Institutional)			L

Screen 2 Results – Summary

- HRT provides higher ridership numbers, transit benefits and reductions in vehicular traffic
- All three alternatives are relatively equal in supporting land use & economic development planning BRT is much cheaper and cost-effective than the other alternatives
- HRT presents least environmental impact, and most beneficial to reducing VMT and air pollutants.

Questions or Feedback?

- Screen 2 Results
- Alignment
- Station Types

Moving Forward

GA 400 Corridor Atematives Analysis
Detailed and Final Definition Report

Table 2.3-2: Accessibility & Connectivity

Alternative	GA400-1A HRT	GA400-1A LRT/BRT	GA400-3	GA400-6	SR9-2
Number of Stations	4	6	7	7	11
Rating (Score): Green= 2 (high rating); Yellow = 1 (medium rating); Red = 0 (low rating)					
Population within a 10-Minute Drive of Stations	2	2	2	2	1
Households within a 10- Minute Drive of Stations	2	2	2	2	1
Employment within a 10-Minute Drive of Stations	2	1	1	1	0
Population within a 10- Minute Walk of Stations	0	1	1	2	2
Households within a 10-Minute Walk	0	.4	1	1	2
Employment within a 10-Minute Walk of Stations	1	1	1	1	2

Screen 2 Results

Public Input Steering Committee Input

Early Scoping

Next Steps

- Engineering refinement
- Present final alternatives to public (Early Scoping for NEPA) in June
- Environmental (NEPA) Process
- Begin second round of stakeholder interviews

OLD New Starts vs. NEW New Starts Process

Connect 400 Contact

Jason Morgan, MARTA Project Manager

Connect400@itsmarta.com

Follow us at Connect 400 on facebook

www.itsmarta.com/north-line-400-corr.aspx

