Today’s Meeting Purpose

• Project Status Update

• Major Findings & Recommendations from Fatal Flaw Analysis

• Overview of Screen 1 Analysis
 – Transit Technologies
 – Screen 1 Alternatives
 – Preliminary Findings

• Small Group Session
Where We Are
Connect 400 Alternatives Analysis Schedule

DISCOVERY
- Goals and Objectives
- Purpose and Need
- Existing Conditions

DISCUSSION
- Evaluation Methodology
- Definition of Alternatives
- Refine Ridership Model

DEVELOPMENT
- Evaluation of Alternatives
- Identify Locally Preferred Alternative
- Develop Financial Plan
- Develop Implementation Plan

DOCUMENTATION
- Final Alternatives Analysis Report

2011
- Winter

2012
- Spring
- Summer-Winter

2013
- Spring

We are Here
Summary of Community/Stakeholder Input

Alignments:
• GA 400 & SR 9 most appropriate for high capacity transit
• Need east-west transit service to enhance access & increase potential ridership
• Consider use of Encore Parkway to serve the west side of GA 400

Transit Technologies:
• HRT on SR 9 infeasible due to major ROW constraints & community impacts

Stations:
• Potential stations at Holcomb Bridge, North Point Mall, & Windward
 – No large park-and-ride at Holcomb Bridge
• Large park-and-ride is appropriate at the northern terminus
• Need park-and-ride lots along study area periphery

Other:
• Need improvements to the existing bus service
• Stay consistent with local & regional initiatives
Screening Process
Technical Screening Process

Fatal Flaw Analysis considers at a high level:
• Purpose & Need
• Constructability & right-of-way impacts
• Generalized Technology Assessment

Defined alternatives (combinations of alignment & transit technology) for Screen 1

Screen 1 applies both quantitative & qualitative evaluation criteria to reduce the number of alternatives
Smaller set of alternatives advance into Screen 2

Screen 2 involves a more in-depth analysis using additional performance measures
Screen 2 identifies the LPA

MARTA Board to adopt LPA
Overview of Fatal Flaw Analysis

Step 1: Technology Assessment

- Heavy Rail (HRT)
- Light Rail/Streetcar (LRT/SC)
- Automated Guideway Transit (AGT)
- Bus Rapid Transit (BRT)
- Bus
- Diesel Multiple Unit (DMU)
Overview of Fatal Flaw Analysis

Step 1: Technology Assessment

- Heavy Rail (HRT)
- Diesel Multiple Unit (DMU)
- Light Rail/Streetcar (LRT/SC)
- Automated Guideway Transit (AGT)
- Bus Rapid Transit (BRT)
- Bus
Overview of Fatal Flaw Analysis

Step 2: Universe of Alternatives

- 3 modes + 9 alignments / GA 400 & SR 9

- GA 400 – 1 (A, B, C, D)
- GA 400 – 3
- GA 400 – 6
- SR 9 – 1
- SR 9 – 2
- SR 9 – 3
Overview of Fatal Flaw Analysis

Step 1: Technology Assessment
- Independent review of 6 modes
- Most appropriate - Bus Rapid Transit (BRT); Light Rail/Streetcar (LRT/SC); Heavy Rail (HRT)

Step 2: Universe of Alternatives
- 3 modes + 9 alignments along GA 400 & SR 9

Step 3: Fatal Flaw Analysis
- Reduce ‘universe’ to a smaller set for Screen 1
- High-level based on purpose/need & constructability
Fatal Flaw Analysis Matrix

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Name</th>
<th>Alignment</th>
<th>Purpose and Need</th>
<th>Constructibility</th>
<th>Fatality</th>
<th>Alternatives Advancing to Screen 1</th>
<th>Rationale for Elimination and/or Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technology</td>
<td>High Capacity Transit</td>
<td>Transit Access</td>
<td>Engineering Constraints/ Costs</td>
<td>Potential Community Impact</td>
</tr>
<tr>
<td>GA 400-1</td>
<td>North Springs MARTA Station - GA 400 - Windward Parkway</td>
<td>BRT</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>GA 400-2</td>
<td>North Springs MARTA Station - GA 400 - Mansell Road - North Point Parkway - Haynes Bridge Road - GA 400 - Windward Parkway</td>
<td>BRT</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>GA 400-3</td>
<td>North Springs MARTA Station - GA 400 - SR 140 - SR 9 - Mansell Road - North Point Parkway - Windward Parkway</td>
<td>BRT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>GA 400-4</td>
<td>North Springs MARTA Station - GA 400 - SR 140</td>
<td>BRT</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>GA 400-5</td>
<td>North Springs MARTA Station - GA 400 - Mansell Road - North Point Parkway - Windward Parkway</td>
<td>BRT</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>GA 400-6</td>
<td>North Springs MARTA Station - GA 400 - SR 140 - SR 9 - Windward Parkway</td>
<td>BRT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SR 9-1</td>
<td>Sandy Springs MARTA Station - Mt Vernon Highway - Windward Parkway</td>
<td>BRT</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SR 9-2</td>
<td>Dunwoody MARTA Station - Hammond Drive - SR 9 - Mansell Road - North Point Parkway - Windward Parkway</td>
<td>BRT</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SR 9-3</td>
<td>Sandy Springs MARTA Station - Mt Vernon Highway - Chamblee Dunwoody Road - Pitts Road - SR 9 - Windward Parkway</td>
<td>BRT</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Rating Scheme

- **High**: 2
- **Medium**: 1
- **Low**: 0

Threshold Score: 4

Alternatives to move forward to Screen 1
Fatal Flaw Analysis Recommendations
Screen 1 Analysis
Introduction/Overview of Screen 1

- Applicable qualitative & quantitative measures to address goals and objectives of AA
 - Mobility
 - Accessibility & Connectivity
 - Land Use & Development
 - Potential for TOD
 - Costs
 - Environmental Quality
 - Community Impacts

- Data & tools used
 - U.S. Census & ARC 2040 Socioeconomic Forecasts
 - Geographic Information System (GIS)
 - Adopted Local Land Use Plans
 - Order of Magnitude Transit Unit Costs
 - Department of Natural Resources
 - Fulton County Parcel Data
Screen 1 Alternatives
Screen 1 Transit Technologies

Transit Technologies Considered for Georgia 400*

<table>
<thead>
<tr>
<th>WHAT IS IT?</th>
<th>HEAVY RAIL</th>
<th>LIGHT RAIL/STREETCAR</th>
<th>BUS RAPID TRANSIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed rail cars powered by electric fixed guideway.</td>
<td>Rail cars powered by overhead catenaries.</td>
<td>Enhanced bus using technology to improve speed and reliability.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHERE DOES IT GO?</th>
<th>Typically used to travel to and from urban locations.</th>
<th>Typically used to travel to and from urban locations.</th>
<th>Typically used to travel to and from urban locations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corridor with concentrated urban centers</td>
<td>Corridor with concentrated urban centers and/or suburban centers</td>
<td>Corridor with dispersed suburban and urban centers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHAT IS CONTEXT? / HOW OFTEN DOES IT STOP?</th>
<th>800 - 1,400 passengers (8-car train)</th>
<th>200 - 500 passengers (single streetcar or 2-car light rail)</th>
<th>45 - 150 passengers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HOW FAST DOES IT GO? (AVERAGE SPEED)</th>
<th>35-50 mph</th>
<th>10 - 30 mph</th>
<th>5-15 mph</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WHAT ARE THE BALLPARK CAPITAL COSTS? (MILLIONS/MILE)</th>
<th>$200-$600</th>
<th>$80-$300</th>
<th>$10-$120</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WHAT DOES IT LOOK LIKE?</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

| WHERE CAN I SEE IT? | Atlanta, Georgia; New York City, New York; Washington, D.C. | Phoenix, Arizona; Dallas, Texas; Charlotte, North Carolina; Portland, Oregon | Boston, Massachusetts; Cleveland, Ohio; Pittsburgh, Pennsylvania |

* Other technologies considered included: diesel multiple unit, automated fixed guideway, and bus. These technologies were eliminated in the Fatal Flaw Analysis and outlined in the Technology Assessment Document (see website).
** High-level estimates based on other cities and previous studies.
GA 400 – 1 (A, B, C, D)

• **Alignment:**
 – 11.9 to 12.7 miles long
 – North Springs Station - GA 400 - Windward

• **Mode:**
 – BRT
 – LRT/SC
 – HRT

• **Key Assumptions:**
 – Use of GDOT Transit ROW*
 – Most direct route
 – High construction costs
 – Fewer community impacts

*GDOT ROW availability on GA 400 to be determined based on Managed Lanes
GA 400 – 3

Alignment:
- 15.1 miles long
- North Springs Station - GA 400 - SR 140 - SR 9 - Mansell - North Point - Windward

Mode:
- BRT

Key Assumptions:
- Use of GDOT Transit ROW*
- Dedicated lanes where feasible on arterials
- Congestion on SR 140
- Grade issues on Mansell crossing GA 400

*GDOT ROW availability on GA 400 to be determined based on Managed Lanes
• **Alignment:**
 - 14.7 miles long
 - North Springs Station - GA 400 - SR 140 - SR 9 - Windward

• **Mode:**
 - BRT

• **Key Assumptions:**
 - Use of GDOT Transit ROW*
 - Dedicated lanes where feasible on arterials
 - Grade/Topography/ Roadway alignment & ROW issues on SR 9

GDOT ROW availability on GA 400 to be determined based on Managed Lanes
SR 9 – 2

• **Alignment:**
 – 19.6 miles long
 – Dunwoody Station - Hammond - SR 9 - Mansell - North Point Pkwy – Windward

• **Mode:**
 – BRT

• **Key Assumptions:**
 – Dedicated lanes where feasible on arterials
 – Grade/Topography/ Roadway alignment & ROW issues on SR 9
 – Consistent with proposed BRT on Hammond
Preliminary Screen 1 Findings
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Measures</th>
<th>GA 400-1 (A-B-C-D)</th>
<th>GA 400-3 BRT</th>
<th>GA 400-6 BRT</th>
<th>SR 9-2 BRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HRT</td>
<td>LRT</td>
<td>BRT</td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>Impacts to roadway capacity</td>
<td>> 1 mile</td>
<td>> 1 mile</td>
<td>> 1 mile</td>
<td>2 – 3 miles</td>
</tr>
<tr>
<td>Access & Connectivity</td>
<td>Projected population, households, employment *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major activity centers *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-income, minority, elderly and zero-car populations*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interface with existing & future transit service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use & Development</td>
<td>Consistency with local and regional plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential for TOD</td>
<td>Projected population and employment densities*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit-supportive future land uses and zoning*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs</td>
<td>Annual O&M ($ million)</td>
<td>$15 – 20 M</td>
<td>$8 – 10 M</td>
<td>$4 – 6 M</td>
<td>$4 – 6 M</td>
</tr>
<tr>
<td></td>
<td>Construction Capital</td>
<td>~$1.9 B</td>
<td>~$2.0 B</td>
<td>~$35 M</td>
<td>~$36 M</td>
</tr>
<tr>
<td>Community Impacts</td>
<td>Potential community impacts</td>
<td>600-750 parcels</td>
<td>600-750 parcels</td>
<td>600-750 parcels</td>
<td>~ 700 parcels</td>
</tr>
<tr>
<td></td>
<td>300-400 acres</td>
<td>300-400 acres</td>
<td>300-400 acres</td>
<td>300-400 acres</td>
<td>~ 400 acres</td>
</tr>
</tbody>
</table>
What We Have Learned So Far…

- ROW along SR-9 will present cost and travel time challenges

- Alignments outside of GA 400 ROW may potentially impact more of the community

- Moderate potential impact to environmental features for all alignments

- HRT and LRT will have highest capital costs
Small Group Exercise

• Confirm Proposed Alignment Alternatives-add/delete/refine

• Identify Station Locations for Each Alternative

• List up to 3 opportunities/constraints associated with each station location
Moving Forward
Next Steps

• Incorporate PSC Input into Station Area Development

• Finalize Screen 1 Analysis

• Public Outreach - December
 – Present findings from Screen 1
 – Gain consensus on alternatives for Screen 2
 – Facebook updates and quiz
Connect 400

Question 1 / 7
What is the purpose for this project?

A. Improve Mobility and Access
B. Support Land Use and Economic Development Planning
C. Provide Cost-Effective Transit Service
D. Minimize Environmental Impacts
E. All of the above

Next
Connect 400 Contact

Jason Morgan, MARTA Project Manager

Connect400@itsmarta.com

Follow us at Connect 400 on facebook

www.itSMARTA.com/north-line-400-corr.aspx