The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

Goals and Objectives

GOAL 1 Improve Mobility and Access

- Increase north-south and east-west transportation capacity
- Increase transit ridership
- Improve transit travel times and reliability for all trip purposes
- Improve transit access and connectivity to employment, education, residential, and activity centers within the study area and the region
- Improve multimodal connections and access to the existing transit systems

GOAL 2 Support Land Use and Economic Development Planning

- Ensure consistency with land use plans of study area jurisdictions
- Support planned and potential economic development
- Provide opportunities for compact land development that supports transit ridership

GOAL 3 Provide Cost-Effective Transit Service

- Maximize operating and cost-efficiency
- Match the transportation investment to the study area's level of travel demand
- Provide a cost-effective transit system

GOAL 4 Minimize Environmental Impacts

- Avoid, minimize, and mitigate impact to cultural, historic, and environmentally sensitive areas
- Avoid, minimize, and mitigate negative impacts on the surrounding community including parks

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

STUDY AREA GA 400 Corridor Alternatives Analysis

GA 400 Corridor Alternatives Analysis **Public Meeting**

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

GOAL 1

to the existing transit systems

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers
 effective alternatives to automobile travel.

GOAL 2 Support Land Use and Economic Development

Planning

OBJECTIVES

- Ensure consistency with land use plans of study area jurisdictions
- Support planned and potential economic development
- Provide opportunities for compact land
 development that supports transit ridership

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

GOAL 4 Minimize Environmental

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

Transit Technology Matrix

BUS	BUS RAPID TRANSIT (BRT)	LIGHT RAIL TRANSIT (LRT)	HEAVY RAIL TRANSIT (HRT)	DIESEL MULTIPLE UNIT (DMU)	AUTOMATED GUIDEWAY TRANSIT
SS Statement			Kito Street S		

A local bus or a coach

VEHICLE

design

options

Shared

Rubber-wheeled vehicles, various design options

Exclusive, Shared,

or Combination

urban areas.

Rail cars powered by overhead catenaries on a fixed guideway. Various design options, including Street Cars (SC).

Exclusive, Shared, or Combination

Rail cars powered by electric fixed guideway

Self-propelled rail cars with a diesel engine, usually underneath the carriage. Cars can operate individually or be linked for longer trains

Single elevated rail that provides support and electric power

Exclusive

E

Typically used for local trips in dense urban areas.

LRT typically serves regional trips of longer distance with few stops, while SC serve shorter local trips with Typically serves regional trips, and local trips in dense urban areas.

Exclusive

Exclusive, usually on existing freight rail lines. New systems can operate similar to LRT

Typically used for regional service with few stops, or where existing freight lines

service with few stops.

EXPRESS: longer distance

are available. New systems can operate similar to LRT.

Flexible stop locations. Various design options.

Typically serves regional

trips, and local trips in dense

Typically fixed stations with a pre-boarding payment. Some systems have flexible stop locations.

Typically fixed stations with a pre-boarding payment. Some systems have flexible stop locations.

Fixed stations with elevated platform and pre-boarding payment.

Fixed stations with elevated platform and pre-boarding payment.

Fixed stations with elevated platform and pre-boarding payment.

CAPACIT

COST

STOPS/ STATIONS

PERSONS / VEHICLE 40-85	PERSONS / VEHICLE 45-150	PERSONS / RAIL CAR 70-255	PERSONS / RAIL CAR 170-300	PERSONS / RAIL CAR 85-200	PERSONS / RAIL CAR 40-160
VEHICLE COST \$ 220,000-\$400,000	vehicle cost \$0.3-\$1 M	VEHICLE COST \$2-\$4 M / LRT \$0.6-\$3 M / SC	VEHICLE COST \$2.5- \$3.5 M	VEHICLE COST \$2.1-\$2.3 M	
	CONSTRUCTION / MILE	CONSTRUCTION / MILE	CONSTRUCTION / MILE	CONSTRUCTION / MILE	CONSTRUCTION / MILE

\$10-\$40 M	\$10-\$105 M	\$80-\$260 M	\$3-\$15 M	\$90-\$130 M	

The purpose of the project is to provide reliable, convenient, efficient, and sustainable transit service in the GA 400 Corridor by:

- Providing high capacity, fixed-guideway transit through the GA 400 Corridor study area;
- Improving transit linkages and coverage to communities within the study area; and
- Enhancing mobility and accessibility to and within the study area by providing a more robust transit network that offers effective alternatives to automobile travel.

Draft Evaluation Framework

Evaluation Framework

Transportation

Goals and Objectives

Evaluation Criteria

Performance Measures

Challenges

GOAL 1: Improve Mobility and Access

- Levels of roadway congestion are forecasted to increase along the corridor.
- Transit mobility options are limited.
- Transit travel times are not competitive with auto travel times in the corridor.
- Travel demands are increasing.

		Total transit boarding	
Increase north-south and east-west transportation capacity		New transit riders compared to No-Build and Baseline	
		Number of transfers per linked trip	
	MODIIITY	Total passengers per mile	
Increase transit ridership		Potential impacts to roadway capacity	
		Annual corridor crash reductions as compared to Baseline	
		Transit travel time savings compared to No-Build and Baseline	
Improve transit travel times and reliability for all trip purposes	Travel Times	Differences in transit and auto travel times between various origins and destinations in the study area	
Improve transit access to employment, education, residential, and activity centers within the study area and region		Projected population, household, and employment near stations	
		Major trip generators/activity centers near stations	
Improve multimodal connections and access to the existing transit systems	Accessibility and Connectivity	Low-income, minority, elderly and zero-car populations/households near stations	
		Interface with existing transit and future Concept 3 rapid transit service	
Improve transit travel times and reliability for all trip purposes		Plans or policies in place for improved bicycle and pedestrian facilities	

Goal 2: Support Land Use and Economic Development Planning

Ensure consistency with land use plans of study area jurisdictions

Land Lise and Development

Consistency with adopted local and regional plans

 Economic development is 	Support planned and potential economic development		Acres of land with economic development incentives near stations			
constrained.	Provide opportunities for compact land development that supports	Detential for TOD	Acres of transit-supportive future land uses and zoning near stations			
	transit ridership	FOLENLIALIOLIOD	Acres of vacant or under utilized land near stations			
	Goal 3: Provide Cost-Effective Transit Service					
	Maximize operating and cost-efficiency		Annual Operations and Maintenance (O&M) Costs			
 There is a funding shortfall to construct transportation 	Match the transportation investment to the study area's level of travel demand	Costs	Construction Capital Costs			
improvements.		Cost Effectiveness	Right of Way Costs			
	Provide a cost-effective transit system		Cost Effectiveness Index (incremental costs divided by transportation system user benefit)			
Goal 4: Minimize Environmental Impacts						
	Avoid, minimize, and mitigate impact to cultural, historic, and environmentally sensitive areas	Environmental Quality	Acres of wetlands and water bodies near stations			
			Number of historic resources near stations			
 Continued growth of vehicular 			Noise sensitive land uses near alignments			
travel will negatively affect the		Air Quality	Change in Vehicle Miles Traveled (VMT) compared to No-Build and Baseline			
study area's environment.			Change in daily emissions of air quality pollutants (CO, NOx, PM2.5, PM10)			
	Avoid, minimize, and mitigate negative impacts on the surrounding	Environmental Justice	Low-income, minority, elderly and zero-car populations/households near alignments			
	community including parks	Community Impact	Estimated community impacts/disruptions and number of displacements			

